02-06 Activité

Soient deux droites parallèles (d) et (d').

Soit A un point n'appartenant ni à (d) ni à (d').

Soient deux droites (d_1) et (d_2) sécantes en A.

Faire une figure, nommer les points créés et montrer que l'on a construit deux triangles semblables.

02-06 Activité

Soient deux droites parallèles (d) et (d').

Soit A un point n'appartenant ni à (d) ni à (d').

Soient deux droites (d_1) et (d_2) sécantes en A.

Faire une figure, nommer les points créés et montrer que l'on a construit deux triangles semblables.

02-06 Activité

Soient deux droites parallèles (d) et (d').

Soit A un point n'appartenant ni à (d) ni à (d').

Soient deux droites (d_1) et (d_2) sécantes en A.

Faire une figure, nommer les points créés et montrer que l'on a construit deux triangles semblables.

02-06 Activité

Soient deux droites parallèles (d) et (d').

Soit A un point n'appartenant ni à (d) ni à (d').

Soient deux droites (d_1) et (d_2) sécantes en A.

Faire une figure, nommer les points créés et montrer que l'on a construit deux triangles semblables.

02-06 Le théorème de Thalès et sa réciproque

Propriété

Soient deux droites sécantes interceptées par deux autres droites de façon à créer deux triangles. Les deux droites sont parallèles si et seulement si les deux triangles sont semblables.

Remarque

Le dessin de est appelé « configuration classique » ou « configuration emboîtée ».

Le dessin de est appelé « configuration croisée » ou « configuration papillon ».

Théorème de Thalès

Soient deux droites (BB') et (CC') sécantes en A. Si (BC) est parallèle à (B'C') alors $\frac{AB}{AB'} = \frac{AC}{AC'} = \frac{BC}{B'C'}$.

« Réciproque » du théorème de Thalès

Si les points A, B, B' d'une part et A, C, C' d'autre part sont alignés dans le même ordre et si on a $\frac{AB}{AB'} = \frac{AC}{AC'}$ alors (BC) est parallèle à (B'C').